metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(chloroacetato- κO)bis(trimethyl-silylmethyl)tin(IV)

Rui-Fang Ding and Qi-Bao Wang*

Department of Pharmacy, Jining Medical College, Xueyuan Road 669, Rizhao, People's Republic of China Correspondence e-mail: wgb_wanggibao@163.com

Received 12 June 2011; accepted 17 July 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.032; wR factor = 0.089; data-to-parameter ratio = 19.2.

In the title complex, $[Sn(C_2H_2ClO_2)_2(C_4H_{11}Si)_2]$, the Sn^{IV} ion is coordinated in a distorted tetrahedral environment formed by two O atoms from two monodenate chloroacetato ligands and two C atoms from two trimethyl silyl ligands. Two further weak intramolecular $Sn \cdots O$ contacts [2.744 (2) and 2.655 (2) Å] are formed by the chloroacetato ligands.

Related literature

For a related structure, see: Parvez et al. (1997).

Experimental

Crystal data

 $\begin{bmatrix} \text{Sn}(\text{C}_2\text{H}_2\text{ClO}_2)_2(\text{C}_4\text{H}_{11}\text{Si})_2 \end{bmatrix}$ $M_r = 480.10$ Triclinic, $P\overline{1}$ a = 10.258 (3) Å b = 10.767 (3) Å c = 10.808 (3) Å $\alpha = 71.529$ (2)° $\beta = 88.733$ (3)°

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 1997) $T_{min} = 0.673, T_{max} = 0.780$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.089$ S = 1.043792 reflections $\gamma = 74.457 (3)^{\circ}$ $V = 1088.2 (5) Å^3$ Z = 2Mo K\alpha radiation $\mu = 1.54 \text{ mm}^{-1}$ T = 293 K $0.28 \times 0.22 \times 0.17 \text{ mm}$

6849 measured reflections 3792 independent reflections 3311 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.029$

197 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.66 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.47 \text{ e } \text{\AA}^{-3}$

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Shandong Province Natural Science Foundation (No. ZR2010BL031).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5269).

References

Bruker (1997). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Parvez, M., Ali, S., Masood, T. M., Mazhar, M. & Danish, M. (1997). Acta Cryst. C53, 1211–1213.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2011). E67, m1190 [doi:10.1107/S1600536811028649]

Bis(chloroacetato-KO)bis(trimethylsilylmethyl)tin(IV)

R.-F. Ding and Q.-B. Wang

Comment

The molecular structure of the title compound is shown in Fig. 1. The Sn^{IV} ion is coordinated in a distorted tetrahedral environment formed by two O atoms from two monodenate chloroacetato ligands and two C atoms from two trimethyl silyl ligands. There are two further weak intramolecular Sn…O contacts [2.744 (2) and 2.655 (2)Å] formed by the chloroacetato ligands. These weak contacts are also observed in a related structure (Parvez *et al.*, 1997) but are longer in the title compound.

Experimental

A mixture of bis(trimethylsilylmethyl) diphenyltin (0.447 g, 1.0 mmol) and dichloroacetic acid (0.251 g, 2.0 mmol) were gradually heated in a oil bath to 433K the temperature was maintained 20 min. After the reaction mixture had cooled to room temperature, hexane (50 ml) was added and the mixture to dissolve the solid. Cooling the filtered solution to room temperature gave colorless crystals 0.676 g suitable for X-ray analysis, yield 96.8%.

Refinement

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.96–0.97 Å and with $U_{iso}(H) = 1.2$ times $U_{eq}(C)$ ($U_{iso}(H) = 1.5$ times $U_{eq}(C)$ for methyl groups). The anisotropic displacement parameters of the C atoms of the t-butyl groups are larger than normal and this might be expected. It was not considered necessary to model these as disordered atoms.

Figures

Fig. 1. The molecular structure of title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms are not shown.

Bis(chloroacetato-ĸO)bis(trimethylsilylmethyl)tin(IV)

Crystal data	
$[Sn(C_2H_2ClO_2)_2(C_4H_{11}Si)_2]$	Z = 2
$M_r = 480.10$	F(000) = 484
Triclinic, <i>P</i> T	$D_{\rm x} = 1.465 \ {\rm Mg \ m}^{-3}$

Hall symbol: -P 1
<i>a</i> = 10.258 (3) Å
b = 10.767 (3) Å
c = 10.808 (3) Å
$\alpha = 71.529 \ (2)^{\circ}$
$\beta = 88.733 (3)^{\circ}$
γ = 74.457 (3)°
$V = 1088.2 (5) \text{ Å}^3$

Data collection

Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 4282 reflections
$\theta = 2.4 - 26.2^{\circ}$
$\mu = 1.54 \text{ mm}^{-1}$
<i>T</i> = 293 K
Block, colorless
$0.28 \times 0.22 \times 0.17 \text{ mm}$

Bruker SMART CCD diffractometer	3792 independent reflections
Radiation source: fine-focus sealed tube	3311 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.029$
ϕ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1997)	$h = -12 \rightarrow 12$
$T_{\min} = 0.673, T_{\max} = 0.780$	$k = -12 \rightarrow 12$
6849 measured reflections	$l = -12 \rightarrow 12$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.089$	H-atom parameters constrained
<i>S</i> = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.0478P)^2 + 0.2466P]$ where $P = (F_o^2 + 2F_c^2)/3$
3792 reflections	$(\Delta/\sigma)_{max} < 0.001$
197 parameters	$\Delta \rho_{max} = 0.66 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.47 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Sn1	-0.01272 (2)	0.16291 (2)	0.24712 (2)	0.04461 (12)
C11	-0.12820 (13)	0.38500 (12)	-0.28104 (11)	0.0775 (3)
C12	0.21959 (14)	0.16555 (14)	0.68827 (12)	0.0881 (4)
Si1	0.30636 (12)	-0.02143 (12)	0.20680 (13)	0.0655 (3)
Si2	-0.32332 (11)	0.38179 (11)	0.26896 (12)	0.0557 (3)
01	0.0062 (3)	0.3146 (3)	0.0762 (2)	0.0587 (7)
O2	-0.1018 (3)	0.2024 (3)	-0.0036 (3)	0.0728 (8)
O3	0.0812 (3)	0.2754 (3)	0.3262 (2)	0.0551 (6)
O4	0.0642 (3)	0.1058 (3)	0.4965 (3)	0.0639 (7)
C1	-0.0506 (4)	0.2954 (4)	-0.0207 (4)	0.0553 (9)
C2	-0.0398 (5)	0.3963 (4)	-0.1488 (4)	0.0705 (12)
H2A	0.0552	0.3833	-0.1664	0.085*
H2B	-0.0745	0.4872	-0.1429	0.085*
C3	0.1012 (4)	0.2083 (4)	0.4492 (4)	0.0490 (8)
C4	0.1715 (5)	0.2691 (5)	0.5255 (4)	0.0690 (11)
H4A	0.1115	0.3560	0.5250	0.083*
H4B	0.2517	0.2865	0.4823	0.083*
C5	0.1288 (4)	-0.0193 (3)	0.2482 (4)	0.0522 (9)
H5A	0.1332	-0.0846	0.3349	0.063*
H5B	0.0918	-0.0536	0.1881	0.063*
C6	0.3067 (8)	0.0900 (10)	0.0410 (8)	0.273 (9)
H6A	0.3984	0.0795	0.0158	0.409*
H6B	0.2665	0.1829	0.0367	0.409*
H6C	0.2555	0.0668	-0.0173	0.409*
C7	0.4046 (5)	-0.1965 (5)	0.2236 (7)	0.1012 (18)
H7A	0.3617	-0.2310	0.1687	0.152*
H7B	0.4086	-0.2530	0.3130	0.152*
H7C	0.4949	-0.1971	0.1978	0.152*
C8	0.3879 (6)	0.0365 (10)	0.3186 (11)	0.214 (6)
H8A	0.4825	0.0230	0.3034	0.320*
H8B	0.3783	-0.0146	0.4073	0.320*
H8C	0.3458	0.1316	0.3039	0.320*
C9	-0.2193 (4)	0.2046 (4)	0.2868 (4)	0.0571 (9)
H9A	-0.2643	0.1716	0.2309	0.069*
H9B	-0.2242	0.1491	0.3761	0.069*
C10	-0.3256 (6)	0.4976 (5)	0.0999 (5)	0.0943 (17)
H10A	-0.3485	0.4573	0.0389	0.141*
H10B	-0.2377	0.5125	0.0842	0.141*
H10C	-0.3918	0.5831	0.0890	0.141*
C11	-0.4989 (5)	0.3740 (6)	0.3089 (7)	0.106 (2)
H11A	-0.5310	0.3297	0.2563	0.158*
H11B	-0.5572	0.4647	0.2911	0.158*
H11C	-0.4991	0.3235	0.3997	0.158*
C12	-0.2531 (6)	0.4483 (6)	0.3835 (6)	0.0938 (17)
H12A	-0.3184	0.5282	0.3900	0.141*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

H12B	-0.1716	0.4711	0.3516	0.141*
H12C	-0.2329	0.3801	0.4682	0.141*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.04811 (17)	0.03622 (16)	0.04990 (18)	-0.00954 (11)	0.00200 (11)	-0.01605 (11)
Cl1	0.0991 (9)	0.0731 (7)	0.0580 (6)	-0.0221 (6)	-0.0174 (6)	-0.0180 (5)
Cl2	0.1022 (9)	0.0869 (8)	0.0676 (7)	-0.0131 (7)	-0.0258 (6)	-0.0234 (6)
Si1	0.0532 (6)	0.0532 (6)	0.0860 (8)	-0.0106 (5)	0.0203 (6)	-0.0210 (6)
Si2	0.0491 (6)	0.0472 (6)	0.0674 (7)	-0.0030 (5)	-0.0021 (5)	-0.0221 (5)
01	0.0770 (18)	0.0549 (15)	0.0437 (14)	-0.0206 (13)	0.0012 (13)	-0.0131 (12)
02	0.099 (2)	0.0588 (18)	0.0646 (18)	-0.0337 (16)	0.0015 (16)	-0.0157 (14)
03	0.0723 (17)	0.0488 (14)	0.0472 (15)	-0.0191 (12)	-0.0033 (12)	-0.0169 (12)
O4	0.0792 (19)	0.0548 (16)	0.0637 (17)	-0.0303 (14)	0.0067 (14)	-0.0177 (13)
C1	0.068 (2)	0.043 (2)	0.052 (2)	-0.0127 (18)	0.0034 (18)	-0.0148 (17)
C2	0.106 (3)	0.065 (3)	0.046 (2)	-0.038 (2)	-0.005 (2)	-0.0133 (19)
C3	0.049 (2)	0.0449 (19)	0.056 (2)	-0.0107 (16)	0.0041 (16)	-0.0215 (17)
C4	0.093 (3)	0.067 (3)	0.056 (2)	-0.033 (2)	-0.004 (2)	-0.022 (2)
C5	0.057 (2)	0.0384 (18)	0.059 (2)	-0.0105 (16)	0.0070 (17)	-0.0167 (16)
C6	0.148 (7)	0.238 (11)	0.212 (10)	0.066 (7)	0.128 (7)	0.121 (8)
C7	0.073 (3)	0.077 (3)	0.155 (6)	-0.008 (3)	0.024 (3)	-0.051 (4)
C8	0.067 (4)	0.272 (12)	0.420 (17)	-0.044 (5)	0.025 (7)	-0.276 (13)
C9	0.050 (2)	0.0434 (19)	0.074 (3)	-0.0112 (16)	0.0034 (18)	-0.0165 (18)
C10	0.097 (4)	0.063 (3)	0.089 (4)	0.008 (3)	-0.012 (3)	-0.004 (3)
C11	0.058 (3)	0.084 (4)	0.174 (6)	-0.010 (3)	0.024 (3)	-0.049 (4)
C12	0.095 (4)	0.094 (4)	0.106 (4)	-0.010 (3)	-0.002 (3)	-0.064 (3)

Geometric parameters (Å, °)

2.088 (3)	C4—H4B	0.9700
2.102 (3)	С5—Н5А	0.9700
2.108 (2)	С5—Н5В	0.9700
2.108 (4)	С6—Н6А	0.9600
1.762 (4)	С6—Н6В	0.9600
1.755 (4)	С6—Н6С	0.9600
1.814 (7)	C7—H7A	0.9600
1.831 (7)	С7—Н7В	0.9600
1.837 (5)	С7—Н7С	0.9600
1.862 (4)	C8—H8A	0.9600
1.854 (5)	C8—H8B	0.9600
1.855 (5)	C8—H8C	0.9600
1.860 (5)	С9—Н9А	0.9700
1.871 (4)	С9—Н9В	0.9700
1.306 (5)	C10—H10A	0.9600
1.214 (5)	C10—H10B	0.9600
1.287 (4)	C10—H10C	0.9600
1.217 (4)	C11—H11A	0.9600
1.488 (5)	C11—H11B	0.9600
	2.088 (3) 2.102 (3) 2.108 (2) 2.108 (4) 1.762 (4) 1.755 (4) 1.814 (7) 1.831 (7) 1.837 (5) 1.862 (4) 1.854 (5) 1.855 (5) 1.860 (5) 1.871 (4) 1.306 (5) 1.214 (5) 1.287 (4) 1.217 (4) 1.488 (5)	2.088(3) $C4$ —H4B $2.102(3)$ $C5$ —H5A $2.108(2)$ $C5$ —H5B $2.108(4)$ $C6$ —H6A $1.762(4)$ $C6$ —H6B $1.755(4)$ $C6$ —H6C $1.814(7)$ $C7$ —H7A $1.831(7)$ $C7$ —H7B $1.837(5)$ $C7$ —H7C $1.862(4)$ $C8$ —H8A $1.854(5)$ $C8$ —H8B $1.855(5)$ $C8$ —H8C $1.860(5)$ $C9$ —H9A $1.871(4)$ $C9$ —H9B $1.306(5)$ $C10$ —H10A $1.214(5)$ $C10$ —H10B $1.287(4)$ $C11$ —H11A $1.488(5)$ $C11$ —H11B

C2—H2A	0.9700	C11—H11C	0.9600
C2—H2B	0.9700	C12—H12A	0.9600
C3—C4	1.500 (5)	C12—H12B	0.9600
C4—H4A	0.9700	C12—H12C	0.9600
O1—Sn1—C5	107.45 (13)	H5A—C5—H5B	106.9
O1—Sn1—O3	79.95 (10)	Si1—C6—H6A	109.5
C5—Sn1—O3	109.82 (13)	Si1—C6—H6B	109.5
O1—Sn1—C9	107.52 (13)	H6A—C6—H6B	109.5
C5—Sn1—C9	131.13 (15)	Si1—C6—H6C	109.5
O3—Sn1—C9	109.00 (13)	Н6А—С6—Н6С	109.5
C6—Si1—C8	108.8 (6)	H6B—C6—H6C	109.5
C6—Si1—C7	110.4 (4)	Si1—C7—H7A	109.5
C8—Si1—C7	107.7 (3)	Si1—C7—H7B	109.5
C6—Si1—C5	109.7 (3)	H7A—C7—H7B	109.5
C8—Si1—C5	110.8 (3)	Si1—C7—H7C	109.5
C7-Si1-C5	109 4 (2)	H7A—C7—H7C	109.5
C10-Si2-C12	108.7(3)	H7B—C7—H7C	109.5
C10 - Si2 - C11	109.7(3)	Sil—C8—H8A	109.5
C_{12} Si2 C11	109.7(3)	Sil—C8—H8B	109.5
C10 - Si2 - C9	109.7 (3)		109.5
$C_{12} = S_{12} = C_{2}$	111.1(2) 110.1(2)	Si1_C8_H8C	109.5
$C_{12} = S_{12} = C_{12}$	110.1(2) 107.5(2)		109.5
$C_{11} = S_{12} = C_{3}$	107.5(2)		109.5
$C_1 = 0_1 = 511$	107.4(2)	Si2 C0 Sp1	109.5
C_{3}	104.0(2)	Si2	121.39 (19)
02 - C1 - 01	121.8(4)	SI2-C9-H9A	107.0
02 - C1 - C2	120.1 (4)	Sn1—C9—H9A	107.0
01 - C1 - C2	112.1 (3)	S12—C9—H9B	107.0
	114.0 (3)	Sn1—C9—H9B	10/.0
CI—C2—H2A	108.8	Н9А—С9—Н9В	106.7
CII—C2—H2A	108.8	S12—C10—H10A	109.5
C1—C2—H2B	108.8	S12—C10—H10B	109.5
Cl1—C2—H2B	108.8	H10A—C10—H10B	109.5
H2A—C2—H2B	107.7	Si2—C10—H10C	109.5
O4—C3—O3	121.6 (3)	H10A—C10—H10C	109.5
O4—C3—C4	124.6 (4)	H10B—C10—H10C	109.5
O3—C3—C4	113.8 (3)	Si2—C11—H11A	109.5
C3—C4—Cl2	113.7 (3)	Si2—C11—H11B	109.5
C3—C4—H4A	108.8	H11A—C11—H11B	109.5
Cl2—C4—H4A	108.8	Si2—C11—H11C	109.5
C3—C4—H4B	108.8	H11A—C11—H11C	109.5
Cl2—C4—H4B	108.8	H11B—C11—H11C	109.5
H4A—C4—H4B	107.7	Si2—C12—H12A	109.5
Si1—C5—Sn1	120.42 (18)	Si2—C12—H12B	109.5
Si1—C5—H5A	107.2	H12A—C12—H12B	109.5
Sn1—C5—H5A	107.2	Si2—C12—H12C	109.5
Si1—C5—H5B	107.2	H12A—C12—H12C	109.5
Sn1—C5—H5B	107.2	H12B—C12—H12C	109.5
C5—Sn1—O1—C1	75.3 (3)	O3—C3—C4—Cl2	-171.7 (3)

supplementary materials

O3—Sn1—O1—C1	-176.9 (3)	C6—Si1—C5—Sn1	-61.1 (5)
C9—Sn1—O1—C1	-70.0 (3)	C8—Si1—C5—Sn1	59.1 (5)
O1—Sn1—O3—C3	-176.4 (2)	C7—Si1—C5—Sn1	177.7 (3)
C5—Sn1—O3—C3	-71.3 (2)	O1—Sn1—C5—Si1	45.7 (2)
C9—Sn1—O3—C3	78.4 (2)	O3—Sn1—C5—Si1	-39.7 (3)
Sn1—O1—C1—O2	-0.3 (5)	C9—Sn1—C5—Si1	179.58 (19)
Sn1—O1—C1—C2	-178.5 (3)	C10—Si2—C9—Sn1	58.6 (3)
O2—C1—C2—Cl1	7.5 (6)	C12—Si2—C9—Sn1	-62.0 (3)
O1—C1—C2—Cl1	-174.5 (3)	C11—Si2—C9—Sn1	178.6 (3)
Sn1—O3—C3—O4	-2.1 (4)	O1—Sn1—C9—Si2	-42.7 (3)
Sn1—O3—C3—C4	178.5 (3)	C5—Sn1—C9—Si2	-176.64 (19)
O4—C3—C4—Cl2	9.0 (6)	O3—Sn1—C9—Si2	42.4 (3)

